

Tetrahedron Letters 41 (2000) 5461-5464

TETRAHEDRON LETTERS

Interaction of t-butyllithium and triphenylmethylenephosphoranes

Karsten Korth and Jörg Sundermeyer*

Fachbereich Chemie, Philipps-Universität Marburg, Hans-Meerwein Str., D-35032 Marburg/Lahn, Germany

Received 16 February 2000; revised 16 May 2000; accepted 25 May 2000

Abstract

NMR experiments show that a directed ortho-metalation occurs at one of the aromatic rings of triphenylmethylenephosphoranes (Ph₃P-CHR, $R = H$, Me) when the phosphorus ylide is treated with 1 equiv. *t*-BuLi. If pre-coordination of t-BuLi is inhibited by a sterically demanding and electron-withdrawing substituent $(R = \text{SiMe}_3)$ no metalation is observed. \odot 2000 Elsevier Science Ltd. All rights reserved.

Keywords: lithiation; phosphoranes; ylides; NMR data.

The lithiation of the simplest Wittig reagent, triphenylmethylenephosphorane 1, has been the origin of a debate between Corey and Schlosser for some years.^{1–6} The controversy has been whether 1 reacts with t-BuLi yielding α -lithiated ylide 2 or ortho-lithiated species 3 (Scheme 1).

Corresponding author. Fax: 0049-6421-28-28917; e-mail: jsu@chemie.uni-marburg.de

Trapping reactions of the formed metalated species were difficult to interpret and not definite.^{2,4,7}

Recently, Grützmacher et al. were able to show that related α -zincated triphenylmethylenephosphorane is able to undergo a base-induced rearrangement to yield the corresponding orthometalated chelate species.8 On the other hand, Bertrand found some spectroscopic evidence for an equilibrium at the α -lithiated ylide ($\langle P_{T2}N\rangle_{2}^{n}BuP-C(SiMe_{3})Li$ but this one has been attributed to a mixture of rotamers.9 As there is no statement in literature as to whether 2 or 3 are able to convert into each other irreversibly or whether there is an equilibrium between these two species we were interested to investigate this problem by multinuclear NMR experiments.

The α -lithiated compound 2 is selectively formed by an iodine-lithium exchange reaction when Ph_3P-CHI (4) is treated with PhLi in THF- d_8 . We were able to confirm the spectroscopic results published previously within that debate.4 The corresponding isomer 3 is prepared by the reaction of 1 with 1 equiv. of t-BuLi in THF- d_8 /hexane (-78°C) and we were able to obtain the complete set of NMR spectroscopic data of 3. An interesting aspect can be concluded from the resonance of the lithiated aromatic carbon atom l of 3 which is shifted to an unusual spectroscopic range at 211.3 ppm.[†] This shift is in excellent agreement to ¹³C NMR values of imidazol-2-ylidenes published by Arduengo et al.¹⁰ Based on our NMR spectroscopic data we propose therefore an electronic structure of 3 that can be formally depicted by the mesomeric forms A–C (Scheme 2).

The mesomeric form B represents a singlet carbene stabilised by adjacent filled π -orbitals coordinating at Li⁺. Since a clear ¹³C-⁷Li coupling pattern (dq) is only observed on atom *l*, Li⁺ seems to be bound more tightly to the *ortho* C_{arvl} and coordinated by the ylidic carbon atom. At the same time the ¹³C⁻⁷Li coupling pattern (dq) makes sure that the atom *l* is connected with only one Li+. In accord with known structures of ortho-metalated iminophosporanes or phosphorus

[†] Preparation of 3: A solution of 100 mg (0.35 mmol) Ph₃P-CH₂ in 2 ml of THF-d₈ was cooled to -78°C and 0.22 ml of t-butyllithium (0.35 mmol, 1.6 M in hexane) were added with a syringe. The solution changed its colour from yellow to red and was stirred for 15 min at -78° C. The solution was concentrated at -78° C in vacuum (10⁻³ mbar) to 1 ml and transferred into a precooled, argon-charged NMR tube. The NMR experiments were done at $-100^{\circ}C$. ¹H NMR $(400.13 \text{ MHz}, \text{THF-}d_8)$: δ 8.20 (d, J(HX)=6.2 Hz, 1H), 7.52 (q, J(HX)=10.6 Hz, J(HX)=8.05 Hz, 4H), 7.45 (q, J(HX)=5.85 Hz, J(HX⁰)=7.68 Hz, 4H), 7.28±7.38 (m, 2H), 6.96 (t, J(HX)=6.95 Hz, 1H), 6.86 (t, J(HX)=8.42 Hz, 1H), 6.73–6.80 (m, 1H), 0.04 (d, ²J(HP)=5.5 Hz, 2H). Comment: X and X' are either coupled protons or phosphorus nuclei. ¹³C NMR (100.32 MHz, THF-d₈): δ 211.3 (dq, ²J(CP) = 60 Hz, ¹J(C⁷Li) = 26 Hz, C₁), 142.25 (d, ³J(CP) = 31 Hz, C_a), 140.8 (d, ¹J(CP) = 117 Hz, C_j), 138.5 (d, ¹J(CP) = 68 Hz, C_i), 132.7 (d, ²J(CP) = 9 Hz, C_o), 131.7 (d, ³J(CP) = 26 Hz, C_c), 130.2 (d, ⁴J(CP) = 2 Hz, C_P), 128.5 (d, ³J(CP) = 10 Hz, C_m), 126 (d, ⁴J(CP) = 4 Hz, C_b), 121.9 (d, ²J(CP) = 14 Hz, C_d), -4.5 (m at -100°C; d at -60°C ¹J(CP)=49 Hz, ¹J(CH)=135 Hz, CH₂). ³¹P NMR (161.97 MHz, THF-d₈): δ 31.8 (s). ⁷Li NMR (155.04 MHz, THF- d_8): δ 4.1 (s).

ylides a monomeric chelate structure (Li is most probably coordinated with additional THF) seems to be more likely than a dimeric or chain type structure.^{8,13,15} The very low field shift of the ⁷Li NMR signal of 3 (4.1 ppm) seems to indicate that $Li⁺$ is within the influence of aromatic ring current effects.

Schlosser proposed that degradation of 3 to 5 is initiated by a nucleophilic attack of the *ortho*lithiated carbanion at the neighbouring phenyl ring.⁴ His NMR data of the presumable intermediate do not exclude the interpretation that degradation may be initiated by an insertion of a nucleophilic carbene (mesomeric form B) into the C $-H$ bond of an adjacent aromatic ring (Scheme 3).

In a NMR sample of 3 prepared at -78° C no conversion or equilibrium between the two discrete and stable isomers 2 and 3 has been detected in the temperature range of -100 to -20° C. In order to prove that 3 is not formed via the α -lithiated ylide 2, that could have been the intermediate of a kinetically controlled deprotonation, we reacted deuterated Ph_3P-CD_2 (6) with t-BuLi in DME (Scheme 4).^{\ddagger} The reaction has been monitored with ²H NMR and only one signal is observed due to 7.^{§,¶} No deuterated products in a 1:1 molar ratio (Ph₃P-CDLi and *t*-Bu-D) were observed. As expected, the ²H NMR shift of 7 is within the spectroscopic range of the CH_2 group of 3. We conclude that formation of 7 does not include a α -metalated species as intermediate.

^{\ddagger} Ph₃P-CD₂ was synthesised using CD₃I, Ph₃P and NaN(SiMe₃)₂ following a procedure by Bestmann.¹⁴

 $\frac{1}{2}$ 2H NMR (61.4 MHz, dme): δ -0.2 (CD₂).

As only traces of t-Bu-D (2 H NMR; 61.4 MHz, DME; δ 1.51 ppm) were detected we assume that it was formed from $D-N(SiMe₃)$ remaining from the synthesis of the deuterated ylide. The amine could not be removed completely.

The general aspects of *ortho-metalation reactions have been reviewed elsewhere.*¹¹ To gain more information about this special directed *ortho*-metalation Ph_3P -CHMe (8) and Ph_3P -CHSiMe₃ (9) were reacted with *t*-BuLi/hexane in THF at -78° C. It was found that the sterically hindered and less acidic ylide 8 reacts readily with *t*-BuLi, but at higher temperatures $(-40^{\circ}C)$ than 1 to give an ortho-metalated species.^{\parallel} The electronically stabilised and probably more acidic ylide Ph₃P-CHSiMe₃ (9) does not react with *t*-BuLi even at room temperature. This is in accord with the point of view that the ortho-metalation is strongly dependent on pre-coordination of the ylide function to Li^{+} . If the coordination is hindered t-BuLi is not directed to the kinetically favoured ortho position of the aromatic ring system. Similar observations have been made in ortho-metalation reactions of phosphine oxides and phosphine imides which are isolelectronic to phosphorus ylides.12,13

Acknowledgements

Financial support from the Graduiertenkolleg `Metallorganische Chemie' Marburg (scholarship for Karsten Korth), DFG (SFB 260) and the `Fonds der Chemischen Industrie' is gratefully acknowledged.

References

- 1. Cristau, H. J. Chem. Rev. 1994, 94, 1299-1313.
- 2. Corey, E. J.; Kang, J. J. Am. Chem. Soc. 1982, 104, 4724-4725.
- 3. Schaub, B.; Jenny, T.; Schlosser, M. Tetrahedron Lett. 1984, 25, 4097-4100.
- 4. Schaub, B.; Schlosser, M. Tetrahedron Lett. 1985, 26, 1623-1626.
- 5. Corey, E. J.; Kang, J.; Kyler, K. Tetrahedron Lett. 1985, 26, 555-558.
- 6. Schlosser, M.; Respondek, J.; Schaub, B.; Tuong, H. B. Chimia 1983, 37, 10-11.
- 7. Okabe, M.; Sun, R.-C. Tetrahedron Lett. 1993, 34, 6533-6536.
- 8. Steiner, M.; Grützmacher, H.; Pritzkow, H.; Zsolnai, L. J. Chem. Soc., Chem. Commun. 1998, 285–286.
- 9. Goumri-Magnet, S.; Gornitzka, H.; Baceiredo, A.; Bertrand, G. Angew. Chem. 1999, 111, 710-712; Angew. Chem., Int. Ed. Engl. 1999, 38, 678-680.
- 10. Arduengo III., A. J.; Dias, H. V. R.; Harlow, R. L.; Kline, M. J. Am. Chem. Soc. 1992, 114, 5530–5534.
- 11. Snieckus, V. Chem. Rev. 1990, 90, 879-933.
- 12. Gray, M.; Chapell, B. J.; Felding, J.; Taylor, N. J.; Snieckus, V. Synlett 1998, 422-424.
- 13. Steiner, A.; Stalke, D. Angew. Chem. 1995, 107, 1908-1910; Angew. Chem., Int. Ed. Engl. 1995, 34, 1752-1754.
- 14. Bestmann, H.-J.; Stransky, W.; Vostrowsky, O. Chem. Ber. 1976, 1694-1700.
- 15. Wingerter, S.; Gornitzka, H.; Bertrand, G.; Stalke, D. Eur. J. Inorg. Chem. 1999, 173-178.

Preparation of 8: Same procedure as in $\ddot{\tau}$; 100 mg (0.34 mmol) Ph₃P-CHMe; 0.22 ml (0.35 mmol, 1.6 M) *t*-BuLi in hexane. The reaction was monitored spectroscopically while warming the NMR tube several times for 30 s to room temperature until 31P spectra indicated complete deprotonation. Slow warming of another sample in the NMR probe head indicated that the deprotonation reaction starts at -40° C. ¹H NMR (400.13 MHz, THF- d_8 , -100°C): δ 8.10 (broad signal, 1H), 7.5-7.1 (broad signal, m, 10 H), 6.8 (broad signal, 1H), 6.65 (broad signal, 1H), 6.55 (broad signal, 1H), 1.45 (d, J(HX) = 20.2 Hz, 3H), 0.2 (s, 1H). Comment: Neither at -40° C nor at -100° C was high resolution of all signals achieved. ¹³C NMR (100.32 MHz, THF-d₈, -100°C): δ 211.4 (dq, ²J(CP) = 50 Hz, ¹J(C⁷Li) = 29 Hz, C₁), 142.1 $(d, {}^{3}J(CP) = 29 \text{ Hz}, C_a)$, 139.9 $(d, {}^{1}J(CP) = 117 \text{ Hz}, C_j)$, 135.3 $(d, {}^{1}J(CP) = 65 \text{ Hz}, C_i)$, 133.5 $(d, {}^{2}J(CP) = 8 \text{ Hz}, C_o)$, 131.2 $(d, {}^{3}J(CP) = 25 \text{ Hz}, C_c)$, 130.2 $(d, {}^{4}J(CP) = 2 \text{ Hz}, C_P)$, 128.5 $(d, {}^{3}J(CP) = 9 \text{ Hz}, C_m)$, 126.0 $(d, {}^{4}J(CP) = 4 \text{ Hz}, C_b)$, 122.2 (d, ²J(CP) = 13 Hz, C_d), 35.9 (d, ²J(CP) = 19 Hz, P-CHMe), 4.1 (m at -100°C, d at -60°C, ¹J(CP) = 62 Hz, ¹J(CH) = 137 Hz, P-CHMe). ³¹P NMR (161.97 MHz, THF-d₈, -100°C): δ 24 (s). ⁷Li NMR (155.04 MHz, THF-d₈, -100°C): δ 3.8 (s).