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Abstract

NMR experiments show that a directed ortho-metalation occurs at one of the aromatic rings of triphenyl-
methylenephosphoranes (Ph;P-CHR, R =H, Me) when the phosphorus ylide is treated with 1 equiv. -BuLi.
If pre-coordination of z-BuLi is inhibited by a sterically demanding and electron-withdrawing substituent
(R =SiMej3) no metalation is observed. © 2000 Elsevier Science Ltd. All rights reserved.
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The lithiation of the simplest Wittig reagent, triphenylmethylenephosphorane 1, has been the
origin of a debate between Corey and Schlosser for some years.!=® The controversy has been
whether 1 reacts with z-BulLi yielding a-lithiated ylide 2 or ortho-lithiated species 3 (Scheme 1).
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Trapping reactions of the formed metalated species were difficult to interpret and not definite.?*”

Recently, Griitzmacher et al. were able to show that related a-zincated triphenylmethylene-
phosphorane is able to undergo a base-induced rearrangement to yield the corresponding ortho-
metalated chelate species.® On the other hand, Bertrand found some spectroscopic evidence for
an equilibrium at the a-lithiated ylide (‘Pr,N)3BuP-C(SiMes)Li but this one has been attributed to
a mixture of rotamers.” As there is no statement in literature as to whether 2 or 3 are able to
convert into each other irreversibly or whether there is an equilibrium between these two species
we were interested to investigate this problem by multinuclear NMR experiments.

The a-lithiated compound 2 is selectively formed by an iodine-lithium exchange reaction when
Ph;P-CHI (4) is treated with PhLi in THF-ds. We were able to confirm the spectroscopic results
published previously within that debate.* The corresponding isomer 3 is prepared by the reaction
of 1 with 1 equiv. of ~-BuLi in THF-dg/hexane (-78°C) and we were able to obtain the complete
set of NMR spectroscopic data of 3. An interesting aspect can be concluded from the resonance
of the lithiated aromatic carbon atom / of 3 which is shifted to an unusual spectroscopic range at
211.3 ppm.T This shift is in excellent agreement to '3C NMR values of imidazol-2-ylidenes pub-
lished by Arduengo et al.!® Based on our NMR spectroscopic data we propose therefore an
electronic structure of 3 that can be formally depicted by the mesomeric forms A—C (Scheme 2).
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The mesomeric form B represents a singlet carbene stabilised by adjacent filled w-orbitals
coordinating at Li*. Since a clear '*C-"Li coupling pattern (dq) is only observed on atom /, Li*
seems to be bound more tightly to the ortho C,.y and coordinated by the ylidic carbon atom. At
the same time the '*C-"Li coupling pattern (dq) makes sure that the atom /is connected with only
one Li*. In accord with known structures of ortho-metalated iminophosporanes or phosphorus

T Preparation of 3: A solution of 100 mg (0.35 mmol) Ph;P-CH in 2 ml of THF-dg was cooled to —=78°C and 0.22 ml of
t-butyllithium (0.35 mmol, 1.6 M in hexane) were added with a syringe. The solution changed its colour from yellow to
red and was stirred for 15 min at —78°C. The solution was concentrated at —78°C in vacuum (10~3 mbar) to 1 ml and
transferred into a precooled, argon-charged NMR tube. The NMR experiments were done at —100°C. '"H NMR
(400.13 MHz, THF-dg): § 8.20 (d, J(HX)=6.2 Hz, 1H), 7.52 (q, J(HX)=10.6 Hz, J(HX)=28.05 Hz, 4H), 7.45 (q,
J(HX)=5.85 Hz, J(HX')=7.68 Hz, 4H), 7.28-7.38 (m, 2H), 6.96 (t, JHX)=6.95 Hz, 1H), 6.86 (t, J(HX)=8.42 Hz,
1H), 6.73-6.80 (m, 1H), 0.04 (d, 2J(HP)= 5.5 Hz, 2H). Comment: X and X' are either coupled protons or phosphorus
nuclei. 3C NMR (100.32 MHz, THF-dg): § 211.3 (dq, 2J(CP) = 60 Hz, 'J(C’Li) =26 Hz, Cy), 142.25 (d, 3J(CP) =31 Hz,
C,), 140.8 (d, 'J(CP)=117 Hz, C)), 138.5 (d, 'J(CP)= 68 Hz, C)), 132.7 (d, 2J(CP)=9 Hz, C,), 131.7 (d, *J(CP)=26 Hz,
C.), 130.2 (d, 4J(CP)=2 Hz, Cp), 128.5 (d, 3J(CP)=10 Hz, Cy,), 126 (d, *J(CP)=4 Hz, Cy), 121.9 (d, 2J(CP)=14 Hz,
Cq), 4.5 (m at —100°C; d at —-60°C 'J(CP)=49 Hz, 'J(CH)=135 Hz, CH,). 3'P NMR (161.97 MHz, THF-dg): § 31.8
(s). 7Li NMR (155.04 MHz, THF-dy): § 4.1 (s).
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ylides a monomeric chelate structure (Li is most probably coordinated with additional THF)
seems to be more likely than a dimeric or chain type structure.®!3!> The very low field shift of the
"Li NMR signal of 3 (4.1 ppm) seems to indicate that Li* is within the influence of aromatic ring
current effects.

Schlosser proposed that degradation of 3 to 5 is initiated by a nucleophilic attack of the ortho-
lithiated carbanion at the neighbouring phenyl ring.* His NMR data of the presumable inter-
mediate do not exclude the interpretation that degradation may be initiated by an insertion of a
nucleophilic carbene (mesomeric form B) into the C—H bond of an adjacent aromatic ring
(Scheme 3).
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In a NMR sample of 3 prepared at —78°C no conversion or equilibrium between the two discrete
and stable isomers 2 and 3 has been detected in the temperature range of —100 to —20°C. In order
to prove that 3 is not formed via the a-lithiated ylide 2, that could have been the intermediate of a
kinetically controlled deprotonation, we reacted deuterated Ph;P-CD, (6) with -BuLi in DME
(Scheme 4).* The reaction has been monitored with ?H NMR and only one signal is observed due
to 7.5% No deuterated products in a 1:1 molar ratio (Ph;P-CDLi and -Bu-D) were observed. As
expected, the 2H NMR shift of 7 is within the spectroscopic range of the CH, group of 3. We
conclude that formation of 7 does not include a a-metalated species as intermediate.
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Li

Scheme 4.

¥ Ph3P-CD, was synthesised using CDsI, PhsP and NaN(SiMe;), following a procedure by Bestmann.!#

§ 2H NMR (61.4 MHz, dme): § -0.2 (CD).

9 As only traces of -Bu-D (°H NMR; 61.4 MHz, DME; § 1.51 ppm) were detected we assume that it was formed from
D-N(SiMes), remaining from the synthesis of the deuterated ylide. The amine could not be removed completely.
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The general aspects of ortho-metalation reactions have been reviewed elsewhere.!! To gain
more information about this special directed ortho-metalation Ph;P-CHMe (8) and PhsP-
CHSiMes (9) were reacted with -BuLi/hexane in THF at —78°C. It was found that the sterically
hindered and less acidic ylide 8 reacts readily with z-BuLi, but at higher temperatures (—40°C)
than 1 to give an ortho-metalated species.! The electronically stabilised and probably more acidic
ylide Ph;P-CHSiMes (9) does not react with ~-BuLi even at room temperature. This is in accord
with the point of view that the ortho-metalation is strongly dependent on pre-coordination of the
ylide function to Li*. If the coordination is hindered #-BuLi is not directed to the kinetically
favoured ortho position of the aromatic ring system. Similar observations have been made in
ortho-metalation reactions of phosphine oxides and phosphine imides which are isolelectronic to
phosphorus ylides.!>!3
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I Preparation of 8: Same procedure as in ; 100 mg (0.34 mmol) Ph;P-CHMe; 0.22 ml (0.35 mmol, 1.6 M) ¢-BulLi in
hexane. The reaction was monitored spectroscopically while warming the NMR tube several times for 30 s to room
temperature until 3'P spectra indicated complete deprotonation. Slow warming of another sample in the NMR probe
head indicated that the deprotonation reaction starts at —40°C. '"H NMR (400.13 MHz, THF-dg, —100°C): § 8.10
(broad signal, 1H), 7.5-7.1 (broad signal, m, 10 H), 6.8 (broad signal, 1H), 6.65 (broad signal, 1H), 6.55 (broad signal,
1H), 1.45 (d, J(HX)=20.2 Hz, 3H), 0.2 (s, 1H). Comment: Neither at -40°C nor at —100°C was high resolution of all
signals achieved. '*C NMR (100.32 MHz, THF-dg, —100°C): § 211.4 (dq, 2J(CP)= 50 Hz, 'J(C’Li)=29 Hz, C)), 142.1
(d, 3J(CP)=29 Hz, C,), 139.9 (d, 'J(CP)=117 Hz, C;), 135.3 (d, 'J(CP) =65 Hz, C;), 133.5 (d, 2J(CP)=8 Hz, C,), 131.2
(d, 3J(CP)=25 Hz, C,), 130.2 (d, *J(CP) = <2 Hz, Cp), 128.5 (d, 3J(CP)=9 Hz, C,,), 126.0 (d, *J(CP)=4 Hz, C;), 122.2
(d, 2J(CP)=13 Hz, Cy), 35.9 (d, 2J(CP)=19 Hz, P-CHMe), 4.1 (m at -100°C, d at -60°C, 'J(CP) =62 Hz, 'J(CH)=137
Hz, P-CHMe). 3'P NMR (161.97 MHz, THF-dg, —100°C): § 24 (s). "Li NMR (155.04 MHz, THF-dg, —100°C): § 3.8 (s).



