

Tetrahedron Letters 41 (2000) 5461-5464

TETRAHEDRON LETTERS

Interaction of *t*-butyllithium and triphenylmethylenephosphoranes

Karsten Korth and Jörg Sundermeyer*

Fachbereich Chemie, Philipps-Universität Marburg, Hans-Meerwein Str., D-35032 Marburg/Lahn, Germany

Received 16 February 2000; revised 16 May 2000; accepted 25 May 2000

Abstract

NMR experiments show that a directed *ortho*-metalation occurs at one of the aromatic rings of triphenylmethylenephosphoranes (Ph₃P-CHR, R = H, Me) when the phosphorus ylide is treated with 1 equiv. *t*-BuLi. If pre-coordination of *t*-BuLi is inhibited by a sterically demanding and electron-withdrawing substituent (R = SiMe₃) no metalation is observed. \bigcirc 2000 Elsevier Science Ltd. All rights reserved.

Keywords: lithiation; phosphoranes; ylides; NMR data.

The lithiation of the simplest Wittig reagent, triphenylmethylenephosphorane 1, has been the origin of a debate between Corey and Schlosser for some years.^{1–6} The controversy has been whether 1 reacts with *t*-BuLi yielding α -lithiated ylide 2 or ortho-lithiated species 3 (Scheme 1).

* Corresponding author. Fax: 0049-6421-28-28917; e-mail: jsu@chemie.uni-marburg.de

Trapping reactions of the formed metalated species were difficult to interpret and not definite.^{2,4,7}

Recently, Grützmacher et al. were able to show that related α -zincated triphenylmethylenephosphorane is able to undergo a base-induced rearrangement to yield the corresponding *ortho*metalated chelate species.⁸ On the other hand, Bertrand found some spectroscopic evidence for an equilibrium at the α -lithiated ylide ('Pr₂N)ⁿ₂BuP-C(SiMe₃)Li but this one has been attributed to a mixture of rotamers.⁹ As there is no statement in literature as to whether **2** or **3** are able to convert into each other irreversibly or whether there is an equilibrium between these two species we were interested to investigate this problem by multinuclear NMR experiments.

The α -lithiated compound **2** is selectively formed by an iodine–lithium exchange reaction when Ph₃P-CHI (**4**) is treated with PhLi in THF-*d*₈. We were able to confirm the spectroscopic results published previously within that debate.⁴ The corresponding isomer **3** is prepared by the reaction of **1** with 1 equiv. of *t*-BuLi in THF-*d*₈/hexane (–78°C) and we were able to obtain the complete set of NMR spectroscopic data of **3**. An interesting aspect can be concluded from the resonance of the lithiated aromatic carbon atom *l* of **3** which is shifted to an unusual spectroscopic range at 211.3 ppm.[†] This shift is in excellent agreement to ¹³C NMR values of imidazol-2-ylidenes published by Arduengo et al.¹⁰ Based on our NMR spectroscopic data we propose therefore an electronic structure of **3** that can be formally depicted by the mesomeric forms A–C (Scheme 2).

The mesomeric form B represents a singlet carbene stabilised by adjacent filled π -orbitals coordinating at Li⁺. Since a clear ¹³C-⁷Li coupling pattern (dq) is only observed on atom *l*, Li⁺ seems to be bound more tightly to the *ortho* C_{aryl} and coordinated by the ylidic carbon atom. At the same time the ¹³C-⁷Li coupling pattern (dq) makes sure that the atom *l* is connected with only one Li⁺. In accord with known structures of *ortho*-metalated iminophosporanes or phosphorus

[†] Preparation of **3**: A solution of 100 mg (0.35 mmol) Ph₃P-CH₂ in 2 ml of THF- d_8 was cooled to -78° C and 0.22 ml of *t*-butyllithium (0.35 mmol, 1.6 M in hexane) were added with a syringe. The solution changed its colour from yellow to red and was stirred for 15 min at -78° C. The solution was concentrated at -78° C in vacuum (10⁻³ mbar) to 1 ml and transferred into a precooled, argon-charged NMR tube. The NMR experiments were done at -100° C. ¹H NMR (400.13 MHz, THF- d_8): δ 8.20 (d, J(HX) = 6.2 Hz, 1H), 7.52 (q, J(HX) = 10.6 Hz, J(HX) = 8.05 Hz, 4H), 7.45 (q, J(HX) = 5.85 Hz, J(HX') = 7.68 Hz, 4H), 7.28–7.38 (m, 2H), 6.96 (t, J(HX) = 6.95 Hz, 1H), 6.86 (t, J(HX) = 8.42 Hz, 1H), 6.73–6.80 (m, 1H), 0.04 (d, ²J(HP) = 5.5 Hz, 2H). Comment: X and X' are either coupled protons or phosphorus nuclei. ¹³C NMR (100.32 MHz, THF- d_8): δ 211.3 (dq, ²J(CP) = 60 Hz, ¹J(C⁷Li) = 26 Hz, C₁), 142.25 (d, ³J(CP) = 31 Hz, C_a), 140.8 (d, ¹J(CP) = 117 Hz, C_j), 138.5 (d, ¹J(CP) = 68 Hz, C_i), 132.7 (d, ²J(CP) = 9 Hz, C_o), 131.7 (d, ³J(CP) = 26 Hz, C_c), 130.2 (d, ⁴J(CP) = 2 Hz, C_P), 128.5 (d, ³J(CP) = 10 Hz, C_m), 126 (d, ⁴J(CP) = 4 Hz, C_b), 121.9 (d, ²J(CP) = 14 Hz, C_d), -4.5 (m at -100° C; d at -60° C ¹J(CP) = 49 Hz, ¹J(CH) = 135 Hz, CH₂). ³¹P NMR (161.97 MHz, THF- d_8): δ 31.8 (s). ⁷Li NMR (155.04 MHz, THF- d_8): δ 4.1 (s).

ylides a monomeric chelate structure (Li is most probably coordinated with additional THF) seems to be more likely than a dimeric or chain type structure.^{8,13,15} The very low field shift of the ⁷Li NMR signal of **3** (4.1 ppm) seems to indicate that Li⁺ is within the influence of aromatic ring current effects.

Schlosser proposed that degradation of **3** to **5** is initiated by a nucleophilic attack of the *ortho*lithiated carbanion at the neighbouring phenyl ring.⁴ His NMR data of the presumable intermediate do not exclude the interpretation that degradation may be initiated by an insertion of a nucleophilic carbene (mesomeric form B) into the C–H bond of an adjacent aromatic ring (Scheme 3).

Scheme 3.

In a NMR sample of **3** prepared at -78° C no conversion or equilibrium between the two discrete and stable isomers **2** and **3** has been detected in the temperature range of -100 to -20° C. In order to prove that **3** is not formed via the α -lithiated ylide **2**, that could have been the intermediate of a kinetically controlled deprotonation, we reacted deuterated Ph₃P-CD₂ (**6**) with *t*-BuLi in DME (Scheme 4).[‡] The reaction has been monitored with ²H NMR and only one signal is observed due to 7.^{§,¶} No deuterated products in a 1:1 molar ratio (Ph₃P-CDLi and *t*-Bu-D) were observed. As expected, the ²H NMR shift of **7** is within the spectroscopic range of the CH₂ group of **3**. We conclude that formation of **7** does not include a α -metalated species as intermediate.

[‡] Ph₃P-CD₂ was synthesised using CD₃I, Ph₃P and NaN(SiMe₃)₂ following a procedure by Bestmann.¹⁴

 $^{^{\$}}$ ²H NMR (61.4 MHz, dme): δ –0.2 (CD₂).

[¶] As only traces of *t*-Bu-D (²H NMR; 61.4 MHz, DME; δ 1.51 ppm) were detected we assume that it was formed from D–N(SiMe₃)₂ remaining from the synthesis of the deuterated ylide. The amine could not be removed completely.

The general aspects of *ortho*-metalation reactions have been reviewed elsewhere.¹¹ To gain more information about this special directed *ortho*-metalation Ph_3P -CHMe (8) and Ph_3P -CHSiMe₃ (9) were reacted with *t*-BuLi/hexane in THF at $-78^{\circ}C$. It was found that the sterically hindered and less acidic ylide 8 reacts readily with *t*-BuLi, but at higher temperatures ($-40^{\circ}C$) than 1 to give an ortho-metalated species.^{II} The electronically stabilised and probably more acidic ylide Ph_3P -CHSiMe₃ (9) does not react with *t*-BuLi even at room temperature. This is in accord with the point of view that the ortho-metalation is strongly dependent on pre-coordination of the ylide function to Li⁺. If the coordination is hindered *t*-BuLi is not directed to the kinetically favoured ortho position of the aromatic ring system. Similar observations have been made in ortho-metalation reactions of phosphine oxides and phosphine imides which are isolelectronic to phosphorus ylides.^{12,13}

Acknowledgements

Financial support from the Graduiertenkolleg 'Metallorganische Chemie' Marburg (scholarship for Karsten Korth), DFG (SFB 260) and the 'Fonds der Chemischen Industrie' is gratefully acknowledged.

References

- 1. Cristau, H. J. Chem. Rev. 1994, 94, 1299-1313.
- 2. Corey, E. J.; Kang, J. J. Am. Chem. Soc. 1982, 104, 4724-4725.
- 3. Schaub, B.; Jenny, T.; Schlosser, M. Tetrahedron Lett. 1984, 25, 4097-4100.
- 4. Schaub, B.; Schlosser, M. Tetrahedron Lett. 1985, 26, 1623-1626.
- 5. Corey, E. J.; Kang, J.; Kyler, K. Tetrahedron Lett. 1985, 26, 555-558.
- 6. Schlosser, M.; Respondek, J.; Schaub, B.; Tuong, H. B. Chimia 1983, 37, 10-11.
- 7. Okabe, M.; Sun, R.-C. Tetrahedron Lett. 1993, 34, 6533-6536.
- 8. Steiner, M.; Grützmacher, H.; Pritzkow, H.; Zsolnai, L. J. Chem. Soc., Chem. Commun. 1998, 285–286.
- Goumri-Magnet, S.; Gornitzka, H.; Baceiredo, A.; Bertrand, G. Angew. Chem. 1999, 111, 710–712; Angew. Chem., Int. Ed. Engl. 1999, 38, 678–680.
- 10. Arduengo III., A. J.; Dias, H. V. R.; Harlow, R. L.; Kline, M. J. Am. Chem. Soc. 1992, 114, 5530-5534.
- 11. Snieckus, V. Chem. Rev. 1990, 90, 879-933.
- 12. Gray, M.; Chapell, B. J.; Felding, J.; Taylor, N. J.; Snieckus, V. Synlett 1998, 422-424.
- 13. Steiner, A.; Stalke, D. Angew. Chem. 1995, 107, 1908–1910; Angew. Chem., Int. Ed. Engl. 1995, 34, 1752–1754.
- 14. Bestmann, H.-J.; Stransky, W.; Vostrowsky, O. Chem. Ber. 1976, 1694–1700.
- 15. Wingerter, S.; Gornitzka, H.; Bertrand, G.; Stalke, D. Eur. J. Inorg. Chem. 1999, 173-178.

^{II} Preparation of **8**: Same procedure as in †; 100 mg (0.34 mmol) Ph₃P-CHMe; 0.22 ml (0.35 mmol, 1.6 M) *t*-BuLi in hexane. The reaction was monitored spectroscopically while warming the NMR tube several times for 30 s to room temperature until ³¹P spectra indicated complete deprotonation. Slow warming of another sample in the NMR probe head indicated that the deprotonation reaction starts at -40° C. ¹H NMR (400.13 MHz, THF-*d*₈, -100° C): δ 8.10 (broad signal, 1H), 7.5–7.1 (broad signal, m, 10 H), 6.8 (broad signal, 1H), 6.65 (broad signal, 1H), 6.55 (broad signal, 1H), 1.45 (d, J(HX) = 20.2 Hz, 3H), 0.2 (s, 1H). Comment: Neither at -40° C nor at -100° C was high resolution of all signals achieved. ¹³C NMR (100.32 MHz, THF-*d*₈, -100° C): δ 211.4 (dq, ²J(CP) = 50 Hz, ¹J(C⁷Li) = 29 Hz, C₁), 142.1 (d, ³J(CP) = 29 Hz, C_a), 139.9 (d, ¹J(CP) = 117 Hz, C_j), 135.3 (d, ¹J(CP) = 65 Hz, C_i), 133.5 (d, ²J(CP) = 8 Hz, C_o), 131.2 (d, ³J(CP) = 25 Hz, C_c), 130.2 (d, ⁴J(CP) = < 2 Hz, C_P), 128.5 (d, ³J(CP) = 9 Hz, C_m), 126.0 (d, ⁴J(CP) = 4 Hz, C_b), 122.2 (d, ²J(CP) = 13 Hz, C_d), 35.9 (d, ²J(CP) = 19 Hz, P-CHMe), 4.1 (m at -100° C, at -60° C, ¹J(CP) = 62 Hz, ¹J(CH) = 137 Hz, P-CHMe). ³¹P NMR (161.97 MHz, THF-*d*₈, -100° C): δ 24 (s). ⁷Li NMR (155.04 MHz, THF-*d*₈, -100° C): δ 3.8 (s).